16 research outputs found

    Sinteza N4-(2,4-dimetilfenil) semikarbazona kao inhibitori 4-aminobutirat aminotransferaze

    Get PDF
    Several 2,4-dimethylphenyl substituted semicarbazones were synthesized in three steps involving aryl urea and aryl semicarbazide formations. The structures were confirmed by spectral and elemental analyses. All the compounds were evaluated for anticonvulsant activity by using a series of test models including maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) and subcutaneous strychnine (scSTY) seizure threshold tests. The compounds were also evaluated for behavioural impairement and depression activity. In the neurochemical investigation, potent compounds were evaluated for their effects on rat brain -aminobutyric acid levels and in vitro -aminobutyrate transaminase (Pseudomonas fluorescens) activity. Preliminary studies suggest these compounds to exhibit anticonvulsant activity via GABA-mediated mechanism.Sintetizirano je nekoliko 2,4-dimetilfenil supstituiranih semikarbazona u tri sintetska koraka koji uključuju aril uree i aril semikarbazide. Strukture spojeva su potvrđene spektroskopskim metoda i elementarnom analizom. Ispitano je antikonvulzivno djelovanje novih spojeva nakon izazivanja konvulzija elektrošokom te supkutanom primjenom pentilentetrazola ili strihnina. Osim toga, testirano je antidepresivno djelovanje te učinak tih spojeva na ponašanje štakora. Praćen je njihov utjecaj na koncentraciju gama-aminomaslačne kiseline (GABA) u mozgu štakora te in vitro na aktivnost gama-aminobutirat transaminaze (Pseudomonas fluorescens). Preliminarni pokusi ukazuju da antikonvulzivno djelovanje ovih spojeva uključuje GABA-ergički sustav

    Sinteza N4-(2,4-dimetilfenil) semikarbazona kao inhibitori 4-aminobutirat aminotransferaze

    Get PDF
    Several 2,4-dimethylphenyl substituted semicarbazones were synthesized in three steps involving aryl urea and aryl semicarbazide formations. The structures were confirmed by spectral and elemental analyses. All the compounds were evaluated for anticonvulsant activity by using a series of test models including maximal electroshock seizure (MES), subcutaneous pentylenetetrazole (scPTZ) and subcutaneous strychnine (scSTY) seizure threshold tests. The compounds were also evaluated for behavioural impairement and depression activity. In the neurochemical investigation, potent compounds were evaluated for their effects on rat brain -aminobutyric acid levels and in vitro -aminobutyrate transaminase (Pseudomonas fluorescens) activity. Preliminary studies suggest these compounds to exhibit anticonvulsant activity via GABA-mediated mechanism.Sintetizirano je nekoliko 2,4-dimetilfenil supstituiranih semikarbazona u tri sintetska koraka koji uključuju aril uree i aril semikarbazide. Strukture spojeva su potvrđene spektroskopskim metoda i elementarnom analizom. Ispitano je antikonvulzivno djelovanje novih spojeva nakon izazivanja konvulzija elektrošokom te supkutanom primjenom pentilentetrazola ili strihnina. Osim toga, testirano je antidepresivno djelovanje te učinak tih spojeva na ponašanje štakora. Praćen je njihov utjecaj na koncentraciju gama-aminomaslačne kiseline (GABA) u mozgu štakora te in vitro na aktivnost gama-aminobutirat transaminaze (Pseudomonas fluorescens). Preliminarni pokusi ukazuju da antikonvulzivno djelovanje ovih spojeva uključuje GABA-ergički sustav

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    In Vivo Imaging-Based Mathematical Modeling Techniques That Enhance the Understanding of Oncogene Addiction in relation to Tumor Growth

    Get PDF
    The dependence on the overexpression of a single oncogene constitutes an exploitable weakness for molecular targeted therapy. These drugs can produce dramatic tumor regression by targeting the driving oncogene, but relapse often follows. Understanding the complex interactions of the tumor’s multifaceted response to oncogene inactivation is key to tumor regression. It has become clear that a collection of cellular responses lead to regression and that immune-mediated steps are vital to preventing relapse. Our integrative mathematical model includes a variety of cellular response mechanisms of tumors to oncogene inactivation. It allows for correct predictions of the time course of events following oncogene inactivation and their impact on tumor burden. A number of aspects of our mathematical model have proven to be necessary for recapitulating our experimental results. These include a number of heterogeneous tumor cell states since cells following different cellular programs have vastly different fates. Stochastic transitions between these states are necessary to capture the effect of escape from oncogene addiction (i.e., resistance). Finally, delay differential equations were used to accurately model the tumor growth kinetics that we have observed. We use this to model oncogene addiction in MYC-induced lymphoma, osteosarcoma, and hepatocellular carcinoma

    Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors

    No full text
    ABSTRACTThe field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A)

    Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells

    No full text
    Tissue-resident memory T cells (TRMs) can profoundly enhance mucosal immunity, but parameters governing TRM induction by vaccination remain poorly understood. Here, we describe an approach exploiting natural albumin transport across the airway epithelium to enhance mucosal TRM generation by vaccination. Pulmonary immunization with albumin-binding amphiphile conjugates of peptide antigens and CpG adjuvant (amph-vaccines) increased vaccine accumulation in the lung and mediastinal lymph nodes (MLNs). Amph-vaccines prolonged antigen presentation in MLNs over 2 weeks, leading to 25-fold increased lung-resident T cell responses over traditional immunization and enhanced protection from viral or tumor challenge. Mimicking such prolonged exposure through repeated administration of soluble vaccine revealed that persistence of both antigen and adjuvant was critical for optimal TRM induction, mediated through T cell priming in MLNs after prime, and directly in the lung tissue after boost. Thus, vaccine persistence strongly promotes TRM induction, and amph-conjugates may provide a practical approach to achieve such kinetics in mucosal vaccines

    High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry

    Get PDF
    Inorganic nanoparticles (NPs) are studied as drug carriers, radiosensitizers and imaging agents, and characterizing nanoparticle biodistribution is essential for evaluating their efficacy and safety. Tracking NPs at the single-cell level with current technologies is complicated by the lack of reliable methods to stably label particles over extended durations in vivo. Here we demonstrate that mass cytometry by time-of-flight provides a label-free approach for inorganic nanoparticle quantitation in cells. Furthermore, mass cytometry can enumerate AuNPs with a lower detection limit of ∼10 AuNPs (3 nm core size) in a single cell with tandem multiparameter cellular phenotyping. Using the cellular distribution insights, we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model vaccine in a B16-OVA melanoma mouse model. This technology provides a powerful new level of insight into nanoparticle fate in vivo.United States. Army Research Office. Institute for Soldier Nanotechnologies (contract number W911NF-13-D-0001)National Institutes of Health (U.S.) (award CA174795)National Institutes of Health (U.S.) (award CA172164)Horizon 2020 FutureNanoNeeds Project (European Commission
    corecore